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It is known that certain configurations which possess curvature are prone to a class 
of instabilities which their ‘flat’ counterparts will not support. The main thrust of the 
study of these centrifugal instabilities has concentrated on curved solid boundaries 
and their effect on the fluid motion. In this article attention is shifted towards a fluid- 
fluid interface observed within a curved incompressible mixing layer. Experimental 
evidence is available to support the conjecture that this situation may be subject to 
centrifugal instabilities. The evolution of modes with wavelengths comparable with 
the layer’s thickness is considered within moderately curved mixing layers. The high 
Taylor/Gortler number rkgime is also discussed which characterizes the ultimate fate 
of the modes. 

1. Introduction 
The understanding of the dynamics involved in mixing layers is crucial in many 

physical problems. The necessarily inflectional profile can support inviscid modes 
which are known to be responsible for many of the structures that are observed. The 
work of Michalke (1964,1965) describes the temporal and spatial linear stability of in- 
compressible shear layers. The catalogue of work concerning this situation is immense ; 
it suffices to say that the problem has been studied by many prolific authors. However, 
one physical process that has received relatively little attention is the subject tackled 
herein: that is, the effect of centreline curvature on the stability of mixing layers. 

Most of the work to date concerning this particular subject has considered turbulent 
mixing layers within experimental contexts, namely: Margolis & Lumley (19654, 
Wyngaard et al. (1968), Castro & Bradshaw (1976), Wang (1984), Karasso & Mungal 
(1990,1991), LeBoeuf (1991) and more recently Plesniak, Mehta & Johnston (1994). 
This experimental work has demonstrated that, if the mixing layer curves towards the 
faster stream, the situation can support longitudinal vortices. Here we complement the 
experimental work by examining, both theoretically and by direct numerical solution, 
the evolution of Gortler vortices with order-one wavenumbers, within situations 
typified by order-one Gortler numbers. 

Since the early work of Taylor (1923) and Gortler (1940) there has been a host of 
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articles devoted to the study of centrifugal instabilities. Taylor (1923) demonstrates 
that the flow between two concentric cylinders is susceptible to toroidal modes when 
the inner cylinder rotates at an angular velocity with a value within a certain interval. 
In an exterior problem, namely the flow over a curved plate, Gortler showed that the 
boundary layer on a concave plate will support longitudinal vortices. These modes 
remain within the boundary layer and have spanwise wavelengths comparable with 
the boundary layer thickness. It is known that the evolution of Gortler vortices 
is strongly dependent on their initial form and position, and the thickening of the 
boundary layer plays a critical role in their fate. It was in the work of Hall (1983) 
that the full parabolic linear Gortler equations were solved numerically. It was 
shown that it is essential for the layer’s evolution to be included in the analysis. A 
starting condition was used which was consistent with the equations and the solution 
was progressed downstream. It was demonstrated that the structure of the mode 
depended heavily on the streamwise position at which the disturbance was imposed. 
The characteristics of the modes, independent of initial form and position, eventually 
coalesce, so that the idea that one can exploit a far downstream asymptotic structure 
is an option. This involves considering high-wavenumber vortices in a high-Gortler- 
number situation; this analysis was originally given in Hall (1982). Here, we initially 
consider the structure of Gortler vortices within spatially evolving mixing layers with 
order-one Gortler numbers. These calculations allow one to predict the decay, growth 
and subsequent decay of the vortices, as they evolve downstream. The main aims of 
this article are to demonstrate that the curved mixing layer can support centrifugal 
modes for a finite downstream distance and to provide a description of their structure. 

As mentioned previously, the consideration of high centrifugal parameter asymp- 
totics can be very revealing. The high Taylor/Gortler number rkgime is split into 
two distinct problems : firstly the inviscid modes and secondly the right-hand branch 
modes. The former of these problems is pertinent when a mode with spanwise 
wavelength comparable with the boundary layer thickness is introduced into a high 
Taylor/Gortler number situation. The second problem occurs when a mode has a 
high wavenumber (i.e. short wavelength) and it attains a neutral state. As a layer 
thickens the centrifugal modes are known to maintain their wavelength, hence the 
local wavelength actually decreases. As the wavenumber of the modes increases in the 
inviscid problem we should match directly onto the small-wavenumber limit of the 
right-hand branch calculation. It is in this intermediate rkgime that the most unstable 
linear mode is encountered. In the Gortler problem this rtgime contains a singularity 
in the growth rate, due to the fact that the mode is driven to the wall where the 
basic velocity becomes zero (Denier, Hall & Seddougui 1991). In the current case the 
velocity is non-zero where the mode resides and hence we do not expect to find this 
significantly more dangerous mode. 

Two recent articles have tackled the problem analytically, concerning themselves 
with the fate of order-one-wavenumber vortices within highly curved situations. Both 
of these articles are limited in scope, since they use a hyperbolic tangent profile to 
model the underlying basic flow, which ignores the non-parallel nature of the mean 
flow, necessary for the study of Giirtler vortices. The assumption of a parallel flow 
then allows the investigation of a local eigenvalue problem, in which the wave in the 
streamwise direction is assumed periodic. For this case a Rayleigh equation can be 
derived, modified by curvature. The local eigenvalue problem can then be solved in 
order to determine the possible growth rates of the modes. Liou (1994) is devoted 
to the effect of curvature on inflectional modes and also identifies three-dimensional 
steady centrifugal modes. Hu, Otto & Jackson (1994) is concerned both with that 
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problem and also the question of the pure inviscid Gortler problem, given in Drazin 
& Reid (1979). We can summarize the findings of Hu et al. (1994) as follows: (i) 
the effect of centreline curvature on the Rayleigh modes appears to be minimal, 
and (ii) the presence of curvature permits an unstable three-dimensional mode which 
will become the prominent mode as the scaled streamwise wavelength decreases (this 
corresponds to reverting to the centrifugal case for which this wavelength is zero). 
The apparent features of the inviscid Gortler problem can be described as that, when 
the centreline curves into the faster stream, the situation can support a family of 
unstable modes. However, if the centreline curves into the slower stream the situation 
is totally stable to inviscid Gortler modes. 

In the conventional Gortler problem the basic state is unaffected by the situation’s 
curvature and this is also true in our case. However, unlike the Gortler case in which 
the basic state is given by a Blasius profile, we shall assume that the basic state is 
given by the Lock (1951) profile in which the normal velocity is taken to be zero at 
the centreline. For comparison purposes, we shall also report selected results for the 
hyperbolic tangent profile; however, it must be remembered that the spatial evolution 
of the layer is crucial and thus it is not sufficient to use the hyperbolic tangent 
profile. In our discussion of the high-Gortler-number modes, we shall comment on 
the difference between the two profiles. This is highlighted by considering certain 
characteristics of the modes as the disparity between the two stream speeds increases. 

The remainder of this article is structured as follows: in $2 we formulate the 
problem at hand, then in 963 and 4 we consider the high-Gortler-number problems 
and their subsequent matching. In $5 the numerical methods used to solve the order- 
one wavenumber problem are described in brief. In $6 the results of the numerical 
calculations are given and finally in 97 some conclusions are drawn. 

2. Formulation 
The problem considered here is the stability of an incompressible steady laminar 

mixing layer which lies between two streams with different speeds in a channel with 
curvature ~ ( x ) .  A schematic is given in figure 1. The upper stream is travelling at UO 
and the lower stream at buU0. We assume that the Reynolds number Re  = Uod/v of 
the situation is large, where d = R2 - R1 is the height of the channel, assumed to be 
constant, and v is the kinematic viscosity. Here, R2 is the radius of the outer wall and 
RI is the radius of the inner. We consider the incompressible Navier-Stokes equations 
in cylindrical coordinates, such that the mixing layer lies along r* = R1 + d / 2  + dy’. 
The velocities are non-dimensionalized by Uo and lengths by d. We assume that 
the local curvature of the channel 6 = d/R1 is small. The non-dimensional steady 
equations, assuming 6 4 1, are thus given by 

au a v  a w  
ax ay az 

au au au ap 1 
ax ay 8~ ax Re 

- + - + - = 0, 

u- + v -  + w- = -- + - P u ,  

a v  dv av 2 d P  1 u- + v- + w- - X 6 U  = -- + -v%, 
ax ay a Z  ay Re 
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FIGURE 1. Schematic of the flow. 

where V2 is the three-dimensional Laplacian operator. We assume that the mixing 
layer is confined to a small region about y = 0, and hence rescale the velocity 
components (0, w) and coordinates ( y ,  z )  by Re-'/2. This spanwise scaling is used since 
we know the vortices have wavelengths commensurate with the layer's thickness. We 
write the flow field as a sum of the mean flow and its perturbation 

q = (G, Re-'I20, 0,l)  + d (8(x, y ) ,  Re-'12 P(x, y ) ,  m(x, y),  Re-'a(x,  y ) )  elkz, 

where k is the wavenumber in the z-direction. The parameter d is vanishingly small 
so that the resulting analysis is linear and we may discard terms proportional to A2. 

We shall focus on two standard models for the mean flow. The first is the Lock 
model, with the velocity components given by 

1 
u = f [ ( q ) ,  b = ___ ( V f l - f )  (2x)'/2 

where 

and y~ is the similarity variable y / ( 2 ~ ) ' / ~ .  This model takes into account the non- 
parallel nature of the mean flow, necessary for the study of Gortler vorticies. The 
second model involves approximating the mean velocity profile by a hyperbolic 
tangent 

We will call this approximation the Tanh model. Most of the results that will be 
presented below are for the Lock model, but we include some discussion for the Tanh 
model since it is a standard approximation to the mixing layer. It is worth noting 
that the Tanh model is not a solution of the basic equations. Since zi, # 0 and ij = 0 
it even contradicts the equation of continuity. This model will only be used for the 
local eigenvalue problems, and it will be shown that, even here, it produces different 
results. 

f" '  + f f "  = 0, f ' ( c o )  = 1, f ( 0 )  = 0, f ' ( -co)  = put 

zi = (1 + p,, + (1 - bu) tanhq), fi = 0. 
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The perturbation equations are given by 

- a3ii a V  a2ii aP a2ii - a3ii au a28 + U- +--+-- + V -  +-- 
ax2ay ax a y 2  ay axay axay2 ax ay2 

au a 2 V  - a0 - a0 
- -__ + k U - + k 2 V - = O  

a Y  a Y 2  ax aY 
and 

aii - aii - 2’ (8 )=-v+-v ,  ax ay 

89 

(2 .1~)  

(2.lb) 

where the differential operator 2’ is given by 

a a a2 
a Y  ax ay u- - u--. 9 __ -k2  - -  

These equations have the opposite sign for the Gortler term when compared to the 
conventional Gortler problem owing to the choice of the coordinate system. The 
Gortler number G is equal to 26Re”’ and it is held fixed at an order-one value as 
Re -+ co and 6 + 0. We shall shortly consider the limit G + 00 (but still less than 
the square root of the Reynolds number). The appropriate boundary conditions are 

(2.lc) 

The numerical and asymptotic solution to the above system is considered in the 
following sections. 

3. Viscous right-hand branch modes 
It is known that as a Gortler vortex progresses downstream it maintains its spanwise 

wavelength, and hence the local wavenumber, k x 1 / 2  = k,, increases. Also the local 
Gortler number, G x x ~ / ~  = G, increases, and hence it is pertinent to consider a high- 
Gortler-number calculation. As G -+ co it is known that k - G1l4 (if x - 
near the right-hand branch of the neutral curve. For simplicity we shall absorb the 
leading-order curvature term xo in the Gortler number. In this rtgime it is known 
that the mode becomes localized within a thin layer of thickness kP1/’ situated at p 
say, Hall (1982). We introduce a layer variable and relevant disturbances quantities 
so that 

y = j j  + k-’/’ y ,  V = k2 ( Vo + k-1/2V1 + .. .) E ,  

where E = exp [k’ J (Do + k-1/2P1 + * . -) dx] and again we are considering steady 
modes. Since we wish to move away from the neutral curve we also expand G in 
terms of k ,  so that 

Substituting these forms into the governing equations and combining the streamwise 
and normal momentum equations at zeroth and first order, it is found that 

8 = (O0 + k - 1 / 2 8 1  + -..) E and 

G = k4 [Go + k-”2G 1 +-I. 

( i iof lo  + 1)2 + iioZilGo = 0 (3.1) 
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FIGURE 2. Variation of the scaled growth rate p’ with the scaled wavenumber 1’ with pu = 2 
(solid line ~ Lock, dashed line ~ Tanh). 

and 

where we have expanded zi locally using a conventional Taylor series as 
2Pozii (j3ozio + 1) + Go (UoU2 + zi:) = 0, 

zi = zio(x) + k-1’2yzi ,(x) + k -  -uz(x) + . . ‘ . 

(3.2) 

2 
I W  - 

2 
The consistency conditions given by (3.1) and (3.2) provide the growth rate and 
location of the mode, namely PO and J .  Transforming these conditions to the 
similarity variables we have 

(P’f’ + + f’f” = 0, (3.3) 

and 

where 2 = Gill4,  with 1 and Po scaled as 

2P’f” (P’f’ + + (f’f’’)’ = 0, (3.4) 

Note that since f’ = zi is positive thoughout the region the condition (3.1) (and 
hence (3.3)) requires that f” < 0 at ?j = Y/(2x)’f2,  that is zi, must be negative and 
hence the lower stream must be faster, hence Pu > 1 (the centreline curves into the 
faster stream). Initially we restrict our attention to the case with Pu = 2. By solving 
(3.3) and (3.4) it is possible to determine P’ as a function of A” and this is shown 
for both the Tanh and Lock profiles in figure 2. As 2’ -+ 0, which corresponds to 
tending towards the inviscid regime, both models predict that P’ tends to a constant, 
0.585786 for the Tanh model and 0.575432 for the Lock model. We shall shortly see 
how this matches directly onto the inviscid modes (discussed in the next section). We 
shall also discuss how the level changes with Pu. If we concern ourselves with the 
neutral mode, that is when /?* = 0, the location of the layer is given by the location 
at which (f’f”)’ is zero (refer to (3.4)) and I* can be found using the relationship 

(3.5) 
For Pu = 2 with the Tanh model we find that V N  = -0.15595 yielding I ;  = 0.9369 

I I! 114 G = ( - f f )  . 
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FIGURE 3. (a)  Variation of 1; with fiu and ( b )  variation of qN with /I,, 
(solid line ~ Lock, dashed line - Tanh). 

P U - 1  

and for the Lock profile 2.; is essentially unaltered (0.9370), but qN - -0.1874 (that 
is slightly further out towards the faster stream). In figure 3 we show the effect of 
changing pu on V N  and Ah. For the Tanh model we can show that 

and from (3.5) 

- 6; (2p: - 3p: - 3pu + 2 + (20: - 2pu + 2)(p,2 - pu + 1)112 ‘I4 

P u  - 1 ) .  
This shows quite clearly that as pu increases, A; -, pi”.  This implies that as the 
disparity between the stream speeds increases a greater range of wavenumbers is 
unstable. This is also observed in the Lock problem, so that the right-hand branch of 
the neutral curve moves to the right as pu increases. In figure 3 the dashed lines are the 
analytic Tanh results and the solid lines are the numerical Lock results. As flu increases 
the location of the neutral mode for the Lock profile comes back in towards the 
centreline, whereas in the Tanh model it tends to arctanh(-i) = log l/$ - -0.346. 
This may be due to the fact that as pu increases the effective width of the mixing 
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FIGURE 4. Inviscid growth rates for the first four modes with flu = 2 and for the Tanh model 

(asymptote shown as dashed line). 

layer narrows in the Lock profile, whereas it remains constant in the more artificial 
Tanh model. 

At the next order the correction to the growth rate is given by 

which tends to zero as A + 0. At the next order the leading-order eigenfunctions are 
determined, which satisfy a parabolic cylinder equation as is the case in the Gortler 
problem discussed in Hall (1982). 

4. Inviscid modes 

with k = O(1) is given by 
Denier et a/. (1991) have shown that the proper expansion of 0 and P as G + co 

0 = exp(G'l2 J pdx)/ ( UO(X, y )  + G-'l2 U1 (x, y )  + . . .) , 
= G1/2exp(G'/2 J Pdx) ( VO(X, y )  + G-1/2 Vl(x, y )  + . . .) , 

where P is the growth rate in the streamwise direction. Substituting into the governing 
equations yields, at leading order, the system 

This system can be rewritten to eliminate Uo, yielding 

The appropriate boundary conditions are Vo -+ 0 as y + fco, which correspond 
to the mode being confined to the layer. Since U is given in terms of the similarity 



Mode 1 

2 -  2 -  

- 

v 0 -  <> 0 -  

- 

-2 - -2 

1 I I I 

93 

Mode 2 

I 
- ,I’ 

\----\ 
/J 

- 

- 

I I I I 

0 

-2 

-2  0 2 
d 2 

-2 0 

FIGURE 5. Eigenmodes for the first four inviscid modes with pu = 2 and for the Tanh model 
(with k’ = 6). 

variable q, it is convenient to transform the above equation, resulting in 

where 

The above equation was solved numerically for the Tanh model only, using a fourth- 
order Runge-Kutta technique, shooting in from q = +cc and matching the function 
and its derivative at q = 0. These results were checked using a fourth-order finite 
difference scheme. A stretched grid was used to reduce the number of points needed 
to retain sufficient accuracy. The results presented henceforth in this section are given 
for the case flu = 2, in which the mixing layer curves into the fast stream. It was 
found, as was to be expected, that for values of Pu less than unity there were no 
unstable vortex modes. The spatial growth rates for the first four modes are given in 
figure 4, and the eigenforms of these modes are given in figure 5. Upon comparing 
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FIGURE 6. First inviscid mode for k“ = 3.5, k’ = 26 and k’ = 100 (the theoretical location of vortex 

shown as a vertical dashed line). 

the unstable mode of the right-hand branch shown in figure 2 and the unstable 
modes of the inviscid rkgime shown in figure 4, we see that the growth rate plateaus 
between the inviscid rkgime and right-hand branch of the neutral curve. This mimics 
the Taylor problem in which, at leading order, the most unstable mode is not well 
defined. On the other hand, in the Gortler problem there is a class of modes with 
distinctly higher growth rates within this rkgime, as identified by Denier ef al. (1991). 
We have thus verified that the mixing layer must curve into the faster stream in order 
to be unstable to longitudinal inviscid centrifugal instabilities. This is equivalent to 
the concave curvature condition for Gortler vortices. 

We now show that the inviscid solutions in the limit k‘ -+ 00 match with the 
viscous right-hand branch solutions as 2’ + 0. We begin by first plotting in figure 
6 the inviscid eigenfunctions VO for the Tanh model verses q for three wavenumbers 
k* = 3.5, k’ = 26 and k‘ = 100. Note that as k’ increases, the structure shrinks to 
a thin layer, consistent with the asymptotic solution for the right-hand branch. To 
begin the matching process, we first set k* = .-I and take the limit f -+ 0. Let q b  be 
the location of the mode, and set 

q = q b f d <  

where 6 = i 5 ( ~ ) .  We now expand the quantities 

/3* = Po + SP,  + S 2 8 2  + . . . , f = f b  + S<fl, + $5’<2f;: + . . . . 
Substitution into equation (4.1) yields the conditions 

P I  = 0, f”’f’ - (f”)2 = o at = q,. 

The first condition shows that as k’ -+ 00 the growth rate tends to a constant value 
(PO = (-f”/f’)’I2 and this is consistent with the value obtained from ( 3 . 3 )  by setting 
A = 0), refer to figure 4, whilst the second condition defines the location of the 
layer (this is shown in figure 6 as a vertical dashed line). The eigenfunction satisfies 
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FIGURE 7. Variation of location of the most unstable mode (Q,) and its growth rate (PO)  with P,, - 1 
(dashed lines represent the Tanh results and solid lines the Lock results). 

a parabolic cylinder equation which matches with the viscous right-hand branch 
provided the choices E. = 

We shall now discuss the effect of changing on the above structure. As with the 
right-hand branch problem it is possible to determine analytic solutions for the Tanh 
model. The solutions for q, and PO are given by 

and 6 = 0 ( d 2 )  are made. 

f lu  + 1 - 2pLI2 ( P u - 1  ) % = arctanh 

and 

The value of q b  (that is the location of the most unstable mode) interestingly 
corresponds to the point at which zi = P,!l2. The values obtained for PO (both 
numerically and analytically) match exactly with those from the right-hand branch 
calculation with A' + 0. Figure 7 shows the variation of y]b and Po with Pu - 1 (dashed 
line Tanh, solid line Lock). As with the right-hand branch calculation the location of 
the mode comes back in towards the centre of the layer; again this is probably due 
to the more realistic thinning of the Lock profile. 
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5. Numerical methods used to solve (2.1) 
The governing equations are parabolic, and thus are solved using a marching 

procedure in the downstream direction. This makes the whole process orders of 
magnitude less expensive that the corresponding elliptic problem. The numerical 
methods used here are taken from Otto & Denier (1996) modified for the mixing 
layer. The equations are discretized in the downstream coordinate using a Crank- 
Nicholson scheme, and a standard second-order finite difference technique is used in 
the normal coordinate. This yields a coupled penta-diagonal and tri-diagonal system 
which is inverted using techniques detailed in Otto & Bassom (1993). This involves 
the entire system being inverted using a fairly complicated Thomas algorithm, which 
serves to retain more of the nature of the system, and hence makes the scheme 
slightly more implicit than if the penta and tri systems are solved individually. In 
order to resolve the detail at the centreline, an algebraically stretched grid is used in 
the normal coordinate, with outer limits at 540 (x)'l2. We chose to solve the problem 
using the similarity variables, and thus the grid naturally spreads to resolve the layer. 

(5.1) 

where 4 in some sense is the centre of the imposed disturbance and $2 is another free 
parameter. In all the calculations contained here X = 20; the effect of varying this 
is to shift the neutral curves slightly, refer to Hall (1983). As one would expect, the 
modes were found to change with 4, but the characteristics coalesced downstream as 
predicted in Hall (1982) and observed in Hall (1983). Results are also presented for 
the initial condition given by 

(5.2) 

The essential difference is that the modes are now odd functions of q about 4. Finally 
we consider an initial condition which provides an initial component of streamwise 
vorticity, 

S. R. Otto, T. L. Jackson and F. Q. Hu 

An initial condition was imposed at a streamwise location, ji- say, of the form 

0 = ($2 + 2 ( q  - 4)') e-(V-Q)', = 0 

fJ = (q  - ~ ) 3  e-(V-V)*, = 0. 

As the modes progress downstream we monitor the evolution using the energy measure 
in physical space 

and define the spatial growth rate as 

8, 1 
& 2x 

b ( X )  = - + -. 

We are largely interested in determining the location where the modes start to grow. 
In a physical problem, some distance downstream of this location it is likely that 
nonlinear effects will come into play. Hence we shall produce neutral curves of G, 
versus k ,  (both defined in §3), where a neutral point is defined as where the real 
part of CJ changes sign (in this case 0 is always real; if we were to consider temporal 
oscillations to the problem this would result in less unstable modes, as shown in Otto 
& Denier 1996). 

The basic state is taken to be the Lock model and is generated using a fourth-order 
Runge-Kutta scheme in conjunction with a two-dimensional secant method. The 
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k X  

FIGURE 8. Neutral curves for G = 1/20, x = ( x / X ) ' / * :  initial conditions (5.1) (solid curves), with bu 
= 6, 4 and 2 ;  initial conditions (5 .2)  with pu = 2 (upper dashed curve), and initial conditions (5.3) 
with /Iu = 2 (lower dashed curve). 

mean flow quantities are constructed from the similarity forms at each station rather 
than marching the boundary layer equations forward. We shall now discuss the results 
of our calculations. 

6. Results 
In this section we present results concerning Gortler modes with wavelengths 

commensurate with the mixing layer's thickness and for order-one Gortler numbers. It 
is clear that there are no local approximations which can deal with this problem other 
than predicting the far downstream behaviour. The majority of 'local' approximations 
use the argument that since the flow evolves over longer scales in the streamwise 
coordinate than in the normal layer variable, the streamwise derivative of 12, and 
hence 13, is zero (fro? continuity). This argument allows one to use a normal mode 
analysis, with 8 = Ueiax, where CI is the eigenvalue. Whilst this is suitable for the 
inviscid modes in which the streamwise evolution is on a far shorter scale than the 
boundary layer evolves on, it is not so in the Gortler problem. 

We solved equation (2.1) subject to the initial conditions (5.1) with 42 = 5 and 
i j  = 5. Note that the disturbance was placed above the centreline. Similar results 
were obtained for the cases i j  = 0 and i j  = -5 and are not presented here. The 
curvature is taken to have the form x = (x /x ) ' l2  and the Gortler number was taken 
to be G = 1/20. In figure 8 we plot Gx versus k, for pu = 2, 4 and 6. Note that 
as pu increases (i.e. greater disparity between the free-stream speeds), the right-hand 
branch moves to the right, consistent with the analysis presented in $3. Also note that 
as the value of pu increases, the minimum of G, decreases, implying that in general 
the modes will become unstable earlier. This is found to be true for other initial 
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FIGURE 9. Growth rates for flu = 6 (dashed) and /Iw = 2 (solid) optimized for k 
( k  = 0.071 for flu = 2 and k = 0.121 for flu = 6). 

conditions. Here, as in Hall (1983) and Otto & Denier (1996), the centre and left-hand 
parts of the neutral curve are dependent on the particular initial conditions chosen. 
For comparison, we also show in figure 8 results using the odd initial conditions (5.2) 
with P,, = 2 and also for the condition with a non-zero component of streamwise 
vorticity, (5.3). We note that for all these conditions the neutral curves coalesce 
on the right-hand branch; however the minima and left-hand branches are strongly 
dependent on the initial conditions. In figure 9 we plot the growth rate ~ ( x )  as a 
function of x for the initial condition (5.1) with %! = 5, Fj = 5, for Pu = 6 (dashed 
curve) and PU = 2 (solid curve). In each case, the wavenumber k chosen corresponds 
to the respective minimum of the neutral curve, as shown in figure 8 :  for P,, = 6, 
k = 0.121 and for Pu = 2, k = 0.071. Note that the mode corresponding to the case 
Pu = 6 becomes unstable earlier and has a larger growth rate than the case P,, = 2. 

To illustrate the streamwise structure of the Gortler modes, we plot in figure 10 
the spanwise vorticity 

I au* av* + -3 = -__ 
aye ax* 

qZ) = -Uy + A (-oy) eikz + O(Re-'I2). . . 

(an asterisk denotes a dimensional quantity) at one downstream location and with 
A = 0.001. The initial conditions and parametric values are the same as in figure 9 for 
flu = 2. It is worth noting that the vorticity occupies virtually the whole layer (as can 
be seen by comparison with the accompanying profile). This plot is obviously artificial 
since a finite-amplitude copy of an infinitesimal mode has been superimposed on the 
flow; however it does show that this vortex structure could play a significant role in 
mixing enhancement. 

We remark here that the choices of 42 and Fj are in a sense arbitrary since the 
starting condition is artificial and is not derived from any rigorous analysis. We 
shall not try to identify the most unstable mode for the order-one Gortler number 
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FIGURE 11.  Neutral curves for G = -1/20 and x = (x/.?)'/~ (solid) and x = 1 (dashed). 

calculation. In these kinds of calculations it is not at all obvious how one would 
define the most unstable mode. Unfortunately it is not just a matter of finding the 
mode with the greatest growth rate, since this quantity varies downstream. It is our 
intention to provide information concerning the receptivity of this situation in the near 
future. In the article of Hall (1990) the problem of free-stream receptivity of Gortler 
vortices within a boundary layer was considered and, by using similar techniques, we 
intend to demonstrate the receptivity of the situation considered herein to free-stream 
disturbances. 
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FIGURE 12. Energy 6 for G = -1/20, x = (x /%) ' /~  
fork = 0.031, 0.036, 0.041, 0.046, 0.051 and 0.056. 

In figure 11 we plot the neutral curves for the case G = -1/20, Pu = 2 and 
x = (x /Z) ' /~  (solid) and x = 1 (dashed). The initial condition used in these calculations 
was taken to be (5.1) with ij = 0 and 42 = 5. The negative Gortler number corresponds 
to the case for which the centreline curves into the slower stream. Note the somewhat 
surprising result of the existence of an unstable band for small spanwise wavenumbers. 
For wavenumbers larger than a critical value, the flow is stable for all Gortler numbers. 
This is consistent with the analysis presented in 993 and 4, as well as the recent work 
by Liou (1994) and Hu et al. (1994). 

Thus, all the high-Gortler-number modes are stable except for those in the neigh- 
bourhood of the left-hand branch. We are not suggesting that these modes will be 
observed in a physical problem, merely that it is important to include all the physics 
of a problem since these modes would be missed by the parallel flow approxima- 
tions. In figure 12 we show the energy E associated with these modes for the case 
x = ( x / X ) ' / ~  and for several wavenumbers. As k decreases the modes become more 
unstable, suggesting that the most linearly unstable mode will have a very long span- 
wise wavelength. It would be interesting to explore the analysis of Choudhari, Hall 
& Streett (1994) for this problem. In that article the receptivity of long-wavelength 
modes is discussed and the modes were found to operate within a triple-deck type 
structure. The other information that can be gleaned from figure 12 is that the energy 
does not return its original value. This is probably the reason why these modes have 
not been reported in the experimental literature. 

7. Concluding remarks 
This study has demonstrated that the curved incompressible mixing layer can 

support centrifugal modes of instability which take the form of longitudinal vortices 
if the mixing layer curves towards the faster stream. As far as we are aware this is the 
first work which investigates the evolution of modes in curved mixing layers where 
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/ lu  = 2 corresponds to the solid line and / lu  = 10 the dotted line 

the wavelengths are comparable with the layer’s thickness and the Gortler number 
is of order one. In order to determine the stability of a given flow it is crucial to 
include many of the real flow features, for instance the spreading of the mixing layer 
and the presence of a normal velocity. The extra parameters that this incurs make a 
parametric study enormous. However, we have shown that by solving the full linear 
parabolic governing equations, we could predict a given mode’s characteristics. In 
addition, we have shown that as the modes develop downstream, they conform to 
a far downstream asymptotic structure. It is in this rkgime that the parallel flow 
approximation could be used; however it is then irrelevant, owing to the short scales 
over which the modes develop. We were also able to show by asymptotic techniques 
and by direct solution, that as the disparity between the stream speeds increased, the 
right-hand branch moved to the right, so that more modes became unstable. 

In $3 it was shown that as the wavenumber decreased from its O(G’/4) value (which 
corresponds to the right-hand branch of the neutral curve), the growth rate of the 
modes tended to a constant multiplied by Similarly in $4 we showed that as 
the wavenumber increased in the inviscid rkgime, the growth rate asymptoted to the 
same value. Thus, there is a direct matching between the two problems and the most 
unstable mode is not uniquely defined (at least to leading order). It is, however, still 
possible to identify the most unstable linear mode in these cases and the interested 
reader is referred to Otto & Bassom (1994) for a discussion of the Taylor case. 
It is interesting to note that it is possible to show that as the stream speed ratio 
increases the location of the right-hand branch moves further to the right, implying 
that a greater range of wavenumbers will be unstable. We also showed in 993 and 
4 that the neutral mode and the most unstable mode were found to remain in the 
neighbourhood of the centreline as the stream speed ratio increased. We conjectured 
that this was due to the fact that the mixing layer effectively thins as the stream speed 
ratio increases. In figure 13 we show (U - l ) / ( f iu - 1) for a variety of values of fiu (for 
the Lock profile) and one can clearly see that as pu increases the extent of the layer 
narrows. 
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Finally, we also demonstrated that the case in which the centreline curved into the 
slower stream can also support centrifugal instabilities. It should be stressed that these 
modes grow for far reduced streamwise distances and do not seem to grow beyond 
their initial amplitudes (refer to figure 12) and thus are unlikely to be seen within 
experimental configurations. However, we have shown that the most unstable modes 
have very small wavenumbers, and their receptivity may be important, Choudhari et 
ai. (1994). This result does not contradict the asymptotic work, since we still predict 
that the inviscid and right-hand branch modes are stable. It will be interesting to 
extend this study to compressible and three-dimensional mixing layers. 
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